V0.3, Work in Progress, Request for Comments.

Upgrade or Switch: Do We Need a Next-Gen Trusted Architecture
for the Internet of AI Agents?

Ramesh Raskar, Pradyumna Chari, Jared James Grogan, Mahesh Lambe, Robert Lincourt, Raghu Bala,
Aditi Joshi, Abhishek Singh, Ayush Chopra, Rajesh Ranjan, Shailja Gupta, Dimitris Stripelis, Maria
Gorskikh, Sichao Wang

Project NANDA

Introduction

The web is on the cusp of a profound transformation. Despite advances in automation and event-driven
design, the current Web still operates largely on a reactive model. Systems wait for user or client requests
before acting, with limited native support for proactive or autonomous behaviors. The emerging Internet
of Al Agents - a network where independently addressable software Al agents discover one another,
authenticate, and act with varying degrees of autonomy - promises not only to serve human requests but
to let Al agents negotiate, coordinate, and transact directly on their behalf.

Unlike traditional web components that remain idle until triggered by a user or a client issues a request,
these Al agents are long-lived, goal-oriented, proactive computational entities with built-in reasoning
capabilities that can anticipate needs, take initiative, maintain ongoing state, retain contextual memory
and work towards defined goals without constant human direction. AI Agents leverage advanced machine
learning models to interpret ambiguous instructions, adapt to changing circumstances, and make
context-sensitive decisions within their domain of operation - capabilities that move far beyond the web’s
traditional, stateless request-response paradigm and exist on a continuum of autonomy.

Al agents, operating with varying degrees of autonomy, are poised to reshape both human—computer
interaction and agent-to-agent interaction with digital systems [2] and with each other through digital
intermediaries. Figure 1 contrasts today’s reactive page/API model with this proactive, memory-driven
architecture.

To illustrate this shift from reactive to proactive systems, consider how a human interacts with a
traditional web interface versus an intelligent agent. The diagram below (Figure 1) contrasts a typical
request-response interaction with a goal-driven Al agent architecture.

V0.3, Work in Progress, Request for Comments.

Traditional Web vs. Internet of Al Agents

Traditional Web Internet of Al Agents
Example:
Example: Human — 5 " -
"Find hotels" | /Client P Human Plan my trip!
Qutcome
Resolution T HTTP request/response Discovery
\

Registry/Trust Layer

DNS propdgation : hrs
CA cerfs : days
Human-scale revocation

Registry/Trust Layer
Agent Discovery < 1s
Capability attest : ms

Instant revocation

Web Pages] (
) g Al Agent A DS Egvy
Powered by LLM (GPT-4, etc. Powered by LLM (GPT-4, etc.
Web APIs s 8 j<—— busred By LM)
T Memory Reasoning Goal/Outcome Memory Reasoning
Databases Planner Tool Executor | Planner Tool Executor
) Example:

“Book hotel”

Modular plug-n-play stack

External Data + APIs

Modular plug-n-play stack

Characteristics

. Reactive: Waits for user/client requests
. Stateless: No memory between sessions

. Manual navigation: Human-driven

interaction

. Request-Response: Single round-trip
pattern

* Domain-scoped identity: DNS + TLS
certificates

* On time interaction

Limited privacy concerns

> 300 B active websites

Characteristics

Proactive: Takes initiative, agent-initiated actions
Stateful: Persistent memory & context
Autonomous: Goal-driven task completion
Multi-step coordination: Agent-to-agent negotiation
Cryptographic identity: DIDs + capability attestation
Self-healing: Goal re-planning & tool recovery

Enhanced privacy concerns

Projected > 1 T agents

Figure 1 | Traditional Web vs. Internet of AI Agents Architecture: The traditional web is a reactive request-response system: a user (or
client app) issues an HTTP call, a stateless server returns a page or JSON payload, and the interaction ends. By contrast, the Internet of AI Agents
introduces stateful, persistent, LLM-powered Al agents that can interpret user goals, retain context across sessions, and autonomously pursue
multi-step tasks,often coordinating with other agents on the user’s behalf. The diagram emphasizes three structural pivots: (1) Control-flow,
origin : human-triggered requests agent-initiated actions, (2) Statefulness : stateless pages/APIs — agents with durable memory embeddings,
and (3) Coordination fabric : single request-response links — networks of cooperating agents. This migration from reactive retrieval to
goal-directed execution brings new requirements for privacy, auditability, and trust, because reasoning and data aggregation increasingly occur
outside an explicit human command loop.

While Figure 1 provides a high-level contrast, Table 1 formalizes this transformation by mapping the core
execution properties of each system. It compares three generations of web execution,static sites, cloud
APIs, and autonomous agents,across a set of key technical dimensions including statefulness, control
flow, concurrency, and security posture.

To understand how this shift manifests technically, we compare three generations of web execution
models,static pages, stateless APIs, and LLM-backed autonomous agents,across key dimensions like
control flow, lifecycle, and trust. Table 1 summarizes this evolution:

V0.3, Work in Progress, Request for Comments.

Table 1: Architectural comparison of execution models

versioned manually

no memory between calls

Dimension Static Web Page |Stateless Cloud Function /|LLM-Backed Autonomous Agent
(HTML/CSS) REST API
Who initiates control? |Client fetches URL [Client calls endpoint Agent decides and pushes messages; client
optional
Lifecycle Immutable file; |[Ephemeral (per-request); | Persistent process / container; maintains long-term

state & memory

Execution context

Web
compute after render

server, no

Isolated runtime (e.g., AWS
Lambda) spun up per call

Event loop with scheduler, tool-calling sandbox,
vector store, policy layer

response

inter-call coordination

State management External DB or none |Must externalise state every |[Internal memory + external stores; can
call self-modify plans

Autonomy level 0 — passive 1 — reactive 2-3 — proactive (can set sub-goals, spawn agents)

Concurrency model |One request <> one|Many isolated calls; no |Parallel, asynchronous task graph; may coordinate

with peer agents

Addressing & identity

DNS + TLS cert
bound to domain

Same as static, plus API
keys

Needs cryptographic Decentralized Identifiers
(Machine Readable Identifiers) and capability
attestation; identity may migrate

Security surface

XSS, CSRF

Injection, auth bypass

Prompt injection, tool-chain abuse, autonomous
exfiltration

Typical latency budget|> 100 ms round-trip [10-100 ms [Internal loop: < 250 ms; External goal fulfilment:
(human perception [service-to-service RPC 0.25-3 s (LLM inference + network)
threshold)

Failure semantics 404 / 5xx Retry logic Must handle goal re-planning, degraded tools,

dynamic trust revocation

V0.3, Work in Progress, Request for Comments.

The table contrasts three generations of web-execution artifacts,static pages, stateless cloud functions, and LLM-backed autonomous
agents,across fundamental dimensions such as who initiates control, lifecycle persistence, state handling, concurrency, identity, security posture,
latency, and failure semantics. It highlights the escalating shift from passive, human-triggered resources to proactive, memory-rich agents that
require new addressing, trust, and orchestration mechanismsUnlike traditional web assets,static pages or stateless API endpoints that only respond
after an explicit client request,LLM-backed agents initiate control flow themselves. They persist as long-lived processes, observe their
environment, and decide when and how to act. The table below isolates the key technical deltas among three execution models.

The progression from static sites to autonomous agents represents more than a technical evolution,it is a
fundamental shift in agency and causality. Control no longer originates in a human request but within the
agent itself. First, execution moves from user-triggered to agent-initiated. Second, memory shifts from
external state to long-lived context. Third, identity becomes portable and cryptographically verified.
Lastly, agents must recover from degraded tools and incomplete plans, not just retry failed calls. These
changes overwhelm web infrastructure designed for passive resources,forcing a rethinking of trust,
addressing, and coordination at internet scale.

Autonomous Al agents magnify the internet’s scaling challenge: instead of five billion human browsers,
we may soon face trillions of always-on software actors negotiating with one another in real-time.
Originally designed for human-driven, browser-based interactions, core systems such as DNS, static IP
addressing, and human-centric certificate workflows were not built to support the scale, speed, and
security demands of billions of automated agents communicating and transacting in real time. As of 2025,
there are over 1.1 billion websites, yet only about 193 million (17%) are actively maintained . Meanwhile,
the internet serves 5.56 billion users worldwide, and there are approximately 7.21 billion smartphones in
use [1] . Today, cloud providers already process trillions of serverless invocations per month, and IoT
devices outnumber humans three-to-one; an agentic web will push these figures orders of magnitude
higher. Without a lightweight index which encompasses a registry architecture that supports
millisecond-level updates, fine-grained identity, and programmable trust, our existing stack will
bottleneck innovation. This vast and rapidly growing digital ecosystem underscores the need for a more
robust and scalable infrastructure to support the emerging network of autonomous agents.

This paper examines whether the path forward is: (i) a pure upgrade of the existing web infrastructure
which is a DNS-centric stack, (ii) a complete switch to entirely purpose-built light weight index of
registry architectures specifically designed for the ‘Internet of Al agents’, or (iii) a phased hybrid of the
two. Drawing on precedents such as dialup-to-broadband and IPv4-to-IPv6 shifts, we identify the
architectural layers (addressing, discovery, trust, capability attestation) where current web foundations
break down and propose measurable targets e.g., sub-second index updates and cryptographically
verifiable capabilities, for an ‘Internet of Al Agents’ to flourish.

V0.3, Work in Progress, Request for Comments.

Table 2: Glossary of Key-terms

ceiling for per-agent IPv4/IPv6 prefixes.

Term Concise Definition Section / Page
ACME (Automatic[IETF protocol that automates TLS-certificate|Upgrade Options —
Certificate = Management |issuance and renewal; modern CAs (e.g., Let’s|Certificate
Environment) Encrypt) use it to reduce issuance to|Management
seconds-highlighting that revocation, not issuance, is
the lingering bottleneck.
Agent (Autonomous Al|Software entity with goal-directed reasoning,|Introduction;
Agent) memory and the ability to initiate actions, migrate,| WebPages vs Agents
or spawn helpers without continuous human
supervision.
Agent Index Authoritative system (central, decentralised or|Throughout
hybrid) that stores cryptographic identifiers,
capability descriptors, trust metadata and audit logs
for agents.
AgentFacts Proposed metadata extension (our paper) that binds |Comparative Analysis
an agent’s ID to capability hashes, policy constraints
and runtime attestations.
BGP (Border Gateway |Internet’s inter-domain routing protocol; table|Challenges in Scaling
Protocol) growth and router FIB limits are cited as a hard

Capability-Based
Addressing

Discovery model that lets clients ask for a function
(e.g., “/translate-en-es”) rather than a static name;
returned agents present cryptographic proof of
capability.

Switch Options

V0.3, Work in Progress, Request for Comments.

Certificate Authority (CA)

Entity that issues X.509 certificates binding public
keys to domain names/IPs; current human-oriented
revocation (CRL/OCSP) is flagged as too slow for
agent churn.

Primer on WWW,

Upgrade Options

CRL / OCSP

Certificate Revocation List and Online Certificate
Status Protocol-mechanisms browsers use to learn if]
a certificate is revoked; cannot keep pace with
millisecond-level agent revocations.

Challenges in Scaling

DNS
System)

(Domain Name

Hierarchical service that maps human-readable
names to IP addresses; update-propagation latency
and cache churn are recurring bottlenecks.

Primer on WWW

DN Push (RFC 8765)

Extension that lets resolvers subscribe to real-time
updates-cited as a possible upgrade path for
sub-second agent record changes.

Upgrade Options

DID
Identifier)

(Decentralised

W3C
location-independent identifiers resolvable without a
central registry; proposed in switch scenarios for
agent identity.

standard for self-sovereign,

Switch Options

Endpoint (Static)

Earliest stage in continuum-static web resource
fetched on demand, no autonomy.

Continuum Diagram

IPv4 / IPv6

32-bit and 128-bit Internet address families; IPv4
exhaustion and IPv6 routing-table growth are
discussed as address-space constraints.

Retrofit Ideas

Latent
Threshold

Capability

Point at which discovery latency, revocation speed
and behavioural attestation requirements exceed the
limits of legacy web protocols (between “Workers”
and “Agents” in the continuum diagram).

Continuum Section

V0.3, Work in Progress, Request for Comments.

OCSP Stapling

TLS feature that delivers revocation proof during
handshake; suggested for
windows in upgrade path.

sub-minute validity

Comparative Analysis

RDAP (Registration Data|JSON-based successor to WHOIS; proposed to carry | Upgrade Options

Access Protocol) new agent capability fields and trust-score URIs.

Registry Shard (Private) |Enterprise-local slice of the global index/registry;|Search Path
resolution must query internal shard first, then|Configuration
cascade outward while emitting audit logs.

Search Path (Configurable) |Ordered list of registries an agent must query-private [Search Path
— public-analogous to split-horizon DNS; necessary | Configuration

for policy-compliant discovery.

Service Persistent API or microservice-stage 2 in the|Continuum Section
continuum; centrally orchestrated and well-served
by today’s service-mesh tooling.
SSI (Self-Sovereign [[dentity model (often DID-based) where entities|Switch Options
Identity) manage their own credentials without a central
authority; appears in switch options.
SVCB/HTTPS DNS |Modern record types that can embed alternative|Upgrade Options
Records endpoints and parameters; suggested for carrying
agent capability hashes in an upgrade scenario.
Worker Event-driven compute unit (serverless function, RPA [Continuum Section

bot)-stage 3 in continuum; identity still provisioned
by DevOps pipelines.

Zero-Knowledge
Capability Proof

Cryptographic proof that an agent possesses a
capability without revealing underlying data; listed
among “unknown unknown” privacy techniques.

Unknown Unknowns

V0.3, Work in Progress, Request for Comments.

A Primer on the WWW Architecture and Hierarchy

Today’s web stack hinges on four interlocking layers i.e. DNS, WHOIS, IP addressing, and Certificate
Authorities, each optimised for human-initiated traffic..

The Domain Name System (DNS) is a globally distributed, hierarchical namespace which maps
human-readable domain names to machine-readable IP addresses. This system provides globally unique
identifiers for websites, a hierarchical namespace structure (root, top-level domains, second-level
domains), distributed management through multiple registrars, and resolution services with propagation
times typically measured in hours. While root-to-resolver updates can propagate in seconds at large
providers, long-tail consumer ISPs still cache aggressively, stretching worst-case visibility to ~24 h.
DNSSEC adds authenticity;but not freshness, an issue that metastasises when agents re-host every few
seconds.

The WHOIS Database complements DNS by providing metadata about domain ownership, including
contact information for domain owners, registration and expiration dates, name server information, and
limited verification of identity. But after GDPR most records are redacted or proxied, and identity checks
remain largely self-attested, which is an unacceptable foundation for autonomous agents that must
negotiate trust without human arbitration.

IP Addressing provides unique identifiers for devices connected to the internet. IPv4 uses 32-bit
addresses, limiting the namespace to approximately 4.3 billion addresses, while IPv6 uses 128-bit
addresses, theoretically allowing for 2128 unique addresses. Yet, address abundance # address usability.
IPv6 deployment remains uneven (= 44% of traffic) and legacy code, ACLs, and monitoring tools still
assume [Pv4 literals. Moreover, both IPv4 (via CGNAT) and IPv6 frequently re-assign addresses in cloud
and mobile contexts, meaning an agent’s [P cannot serve as a stable identifier or trust anchor.

Certificate Authorities issue digital certificates that authenticate website identities and enable secure
communication. They validate domain ownership, issue certificates with expiration dates, maintain
certificate revocation lists, and operate at human-oriented speeds and verification levels. Modern ACME
workflows (e.g., Let’s Encrypt) reduced certificate issuance to seconds, yet revocation and behavioural
attestation remain unsolved. CRLs and OCSP struggle at today’s scale; an agentic web with trillions of
cert-bearing entities would need near-instant, fine-grained revocation that is far beyond current browser
PKI.

This architecture has served the human-centric web remarkably well for decades but was designed with
human timescales and interaction patterns in mind. The question now is whether this foundational
architecture can evolve to support the emerging requirements of autonomous agents.

A Lesson from Dial-up — Broadband

The transition from dialup to broadband internet provides valuable insights into how we might approach
the shift to the Internet of Al agents. When the internet was first commercialized, existing telephone
infrastructure seemed like a natural fit - it already connected most homes and businesses. However, as
internet usage evolved, fundamental limitations of dial-up became apparent. Just as dial-up piggy-backed

V0.3, Work in Progress, Request for Comments.

on copper phone lines before bandwidth demands forced DSL, cable, and eventually fiber, today’s Al
agents could piggy-back on DNS/IP; but AI Agents' need for millisecond-level identity, trust, discovery
and coordination may ultimately demand purpose-built layers.

Why We Didn't Use Dialup for Internet Long-Term

Dialup's limitations (max 56 kbps downstream vs. >1Mbps early DSL) revealed the importance of
designing infrastructure for future needs rather than just current requirements. The circuit-switched
connection model was flawed for internet use, as dial-up's temporary connections were not suitable for
the persistent connectivity the internet would ultimately demand.

The addressing system also proved inadequate. Phone numbers encode geography for voice switches, but
not logical topology for packet routing. Phone numbers, while hierarchically coded for voice switches,
offered no stable, routable identity in an IP network, and callers could reach the ISP but not be reached in
return, breaking peer-to-peer use-cases. . Additionally, the system suffered from one-way dial-out
connections, where home machines could dial up the mainframes but not the other way around.
Additionally, per-minute tariffs and 200ms handshake latency stifled always-on applications.

Scalability emerged as another critical limitation. The telephone system was designed for
human-to-human voice communication, not for the massive data transfers that would become common
with the growth of the internet. Broadband which is packet-switched, flat-rate, symmetric, and persistent,
was not a luxury upgrade; it was a prerequisite for the web’s rich, interactive era. The same kind of
architectural ceiling now looms for Al agent discovery, identity, and trust. Broadband only exploded when
new apps demanded it and Al agentic services will need a similar ‘killer-app’ pull.

How We Dealt with Known Unknowns

Engineers could plainly see that dial-up’s 56 kbps ceiling and ~ 200 ms modem latency would strangle
bandwidth-hungry, interactive apps. So they designed last-mile upgrades i.e. DSL, cable, then fiber and
that offered > 1 Mbps downstream and sub-30 ms RTTs while staying ‘always-on.’

Moving from circuit-switched voice to packet-switched data also demanded network topologies that
supported many-to-many flows: early CDN experiments and P2P systems (Napster, BitTorrent) tested
these limits.

Discovery evolved in parallel: search engines and the DNS hierarchy scaled from thousands of sites in
1994 to more than a billion indexed pages by 2000, proving that addressing + search - not telephone
numbers - were the real breakthroughs. These lessons suggest that the Al agentic era will likewise require
orders-of-magnitude improvements in lookup latency, persistent addressing, and capability-level
discovery.

How We Prevented Unknown Unknowns

The move to packet-switched, layered networks with TCP/IP, created a flexible foundation that could
accommodate unforeseen developments in several key ways and the internet stack provided insurance

V0.3, Work in Progress, Request for Comments.

against the ‘unknown unknowns’ of the 1990s - and paradoxically, spawned new ones. The open
IPv4/IPv6 substrate allowed bandwidth-intensive applications to flourish (like YouTube, now > 60% of
consumer downstream traffic) in a way that no one could have predicted, such as video and streaming.
The layered protocol design enabled security features to be added without disrupting the underlying
infrastructure, leading to the development of HTTPS and modern security protocols. The addressing
system provided the ability for a single IP address to host multiple services and applications, enabling the
growth of SaaS and diverse endpoints. Finally, the flexible addressing scheme allowed for entirely new
categories of connected devices, including mobile phones (approx. 15 Billion) and IoT devices,
demonstrating how a well-designed foundation can support innovations beyond its original conception.
Layering also meant we could retrofit HTTPS atop HTTP a decade later, yet that upgrade required new
browsers, servers, and a global CA ecosystem, which is proof that flexibility still carries upgrade friction.
Likewise, TCP/IP’s openness invited spam and DDoS, illustrating that extensibility without embedded
trust can backfire, underscoring the need for built-in trust primitives for Al agents.

This history demonstrates that successful infrastructure transitions require both addressing known
challenges and building in flexibility for unforeseen developments. The Internet of Al agents will likely
require similar foresight,particularly as billions of Al agents begin operating simultaneously across
networks, creating unprecedented demands for coordination, resource allocation, and security that we
cannot fully anticipate today.

The broadband transition illustrates a deeper truth: infrastructure does not just enable applications,it
shapes what kinds of applications are even conceivable. Packet-switching, always-on connections, and
scalable routing did not simply improve internet use; they redefined it. Similarly, the architecture we
choose for Al agents registries will either constrain or unlock future capabilities and governance models
for digital agents.

Possible Extended Use of Current DNS

Before examining entirely new architectures, it's worth considering how the current DNS system might be
extended to accommodate autonomous Al agents:

Walled Gardens: Few IP Addresses but Many Endpoints

One approach would be to treat agents similarly to how web applications are currently managed: Each Al
agent platform (i.e. specialized agent hosting services) would maintain a range of IP addresses. Individual
Al agents would be identified by paths or subdomains (example.com/Agent]l or Agentl.example.com/).
Internal routing would direct traffic to specific agents i.e. Akamai edge config pushes ~100 k rules/POP;
an Al agentic platform may need 10 - 100x%.

However, this approach faces several challenges. While it leverages existing infrastructure, it creates
potential bottlenecks and single points of failure, as well as security and compliance issues. Each walled
garden will have to agree to global protocols to talk to agents in another walled garden, which will add
latency and performance variations. The walled garden hosts may throttle performance based on an
opaque set of rules.

V0.3, Work in Progress, Request for Comments.

Privacy concerns also emerge with this model, because the walled-garden host retains full observability
over every agent interaction. While users can readily initiate a call to DeltaAgentl, the reverse direction is
feasible only through device-token or push-gateway intermediaries (e.g., WebPush, APNs) or other
NAT-traversal techniques, adding latency and increasing platform lock-in.

While URL paths or sub-domains give a quick on-ramp, they effectively hand the hosting platform, rather
than the organisation running the agent - control over naming, TLS termination, observability, and
throttling. A future-proof design would assign each agent a cryptographic identifier (e.g.,
DID:delta-booking-v1) that resolves to its current hosting URL via a registry/index. That indirection
preserves continuity when the Al agent migrates hosts, and allows trust metadata or revocation status to
travel with the identifier, not the platform.

Each Agent with an IPv4 Address

Assigning every Al agent a unique public IPv4 address (such as @Agent] = x.y.z.w), offers superficially
simple, DNS-compatible reachability, but it collapses under scrutiny. The system would be severely
limited by the IPv4 address space (4.3 billion addresses, of which over 90% are already allocated
according to IANA, with critical regions like APNIC and RIPE NCC having exhausted their allocations
since 2011). The global free pool has been exhausted since 2011, and secondary-market /32 leases
average ~ $0.40 per month i.e. putting a trillion agents at roughly $400 billion in monthly address fees.
Even if cost were ignored, the routing fabric would buckle: injecting 10'? /32 prefixes would inflate
today’s ~1 million-entry BGP table by six orders of magnitude, demanding tens of terabytes of high-speed
TCAM in every core router. Most cloud- or mobile-hosted agents would also sit behind carrier-grade
NAT, breaking inbound connectivity unless brittle hole-punch or reverse-tunnel work-arounds are used
i.e. re-introducing latency and single-point failures. Security fares no better: per-agent IPv4 exposes an
enormous DDoS surface, while address allocation conveys zero cryptographic proof of agent identity or
code integrity. Taken together, IPv4-per-agent is not merely impractical, it is economically untenable,
operationally unscalable, and architecturally incompatible with the trust requirements of an Internet of Al
Agents.

Each Agent with IPv6 Address

IPv6 offers a much larger address space, with 2*128 possible addresses. This appears to solve the
scarcity: one could hand every grain of sand, and every Al agent its own /128. This approach would allow
directly addressable agents without intermediaries while maintaining compatibility with existing DNS
systems. In practice, direct [Pv6 addressing introduces four show-stoppers. (1) Stability: Mobile and
cloud stacks use privacy extensions that rotate IPv6 interface IDs hourly to daily; a literal address is
therefore not a durable identifier. (2) Routing scale: Today’s global BGP table holds ~1 M IPv6 prefixes.
Advertising even 10° agent-specific /128s would 10°x inflate router FIB/RIB memory, far beyond
hardware limits. (3) Registry/Index bloat: Reverse-DNS and DNSSEC signatures for billions of PTR
records would add petabytes of zone data and hours of SOA transfer time, defeating sub-second lookup
goals. (4) Trust signal void: An IPv6 literal conveys no ownership or code-integrity proof, forcing an
extra identity layer anyway. Additionally, this requires full [Pv6 adoption, which has been slow over time
(global IPv6 adoption stands at approximately 44%, with significant variation across countries [5]); We

V0.3, Work in Progress, Request for Comments.

have an address space that is abundant but operationally unstable, economically burdensome, and
trust-agnostic - useful as a transport plumbing, but insufficient as a standalone agent identifier.

An Important Consideration: Boundary-Aware Naming and Configurable Search
Paths

An essential capability that must be addressed is the configurable resolution paths for Al agents,
analogous to split-horizon DNS. Traditional DNS allows seamless movement between intranet and
internet resources, automatically routing queries through organizational internal name servers and only on
a miss, forwards the query to public roots for resolution - seamlessly bridging intranet and internet.
However, no comparable mechanism exists for Al agent discovery: - organizations cannot effectively
intersect their internal search index with public search indexes without leaking data or losing policy
control.

For the Internet of Al agents to succeed behind the firewall, each agent must honor an
administrator-defined resolution order that prioritizes internal registries, then selectively consults external
registries. . Organizations need the ability to prioritize internal agent discovery and communication while
maintaining controlled access to public domain agents. At the same time, every cross-boundary lookup
must emit a verifiable audit event, so security teams can trace when an Al agent leaves the private domain
and verify that it adhered to data-handling policies. Without policy-aware resolution and
boundary-crossing traceability, enterprises will not risk deploying agents that must collaborate both inside
and outside their networks.

From Static Endpoints to Services to Workers to Autonomous Agents: a Continuum
of Web Actors

When the Web is described as moving “from web pages to agents,” it is easy to imagine a sudden, binary
leap. In practice the evolution is gradual, and most of the infrastructure we rely on today was stretched,
sometimes painfully, at each intermediate step. By recognising this continuum we can isolate the exact
point at which the legacy stack finally breaks, and therefore justify why a new agent-oriented index is
required.

Continuum of Web Actors

Endpoints Services Workers
Static pages & files REST / GraphQL APIs Serverless | RPA

Autonomous Agents
Reasoning & Delegation

Instant discovery, revocation,
cryptographic proof

Stateless fetch Persistent state Event-driven CAPABILITY THRESHOLD T

1. Endpoints : The Stateless Web

The original Web exposed static endpoints i.e. HTML files, images, style sheets and, later, simple CGI
scripts. A user (or crawler) made an explicit request, the server returned a byte stream, and the
conversation ended. DNS, HTTP caching hierarchies and domain-validated TLS certificates were more
than adequate for these one-shot interactions; nothing in the model required rapid renaming, mid-flight
revocation, or complex policy checks.

V0.3, Work in Progress, Request for Comments.

2. Services : Always-On APIs

The next layer of capability arrived when businesses wrapped their databases in REST and GraphQL
services. Now machines, not just humans, were first-class clients, and data mutated continuously rather
than on release nights. We coped by bolting on service discovery (SRV records, load balancers, Envoy
side-cars) and by hardening transport with mutual-TLS. Yet the architecture remained centrally
orchestrated: DevOps pipelines created each service, security teams issued its credentials, and version
upgrades rolled out on a schedule measured in hours or days.

3. Workers : Event-Driven Compute

Cloud platforms then introduced serverless functions, cron jobs and RPA bots. These “workers” are
short-lived but bursty; thousands can spin up when a message queue spikes and disappears a second later.

The industry responded with function gateways, granular IAM roles and CI/CD automation. Even so, the
identity of every worker is still provisioned by humans (or human-authored pipelines), and revocation can
tolerate minute-scale propagation. The web’s naming, security and governance fabric is stretched, but it
holds.

4. Agents : Autonomy and Delegation

Autonomous agents sit at the far end of this continuum. They do not merely react to events; they pursue
goals, maintain memories, migrate between runtimes and, crucially, delegate sub-tasks to freshly
spawned helper agents. Their population can rise or fall by millions in the time it takes a Kubernetes
deployment to roll one replica forward. At this stage three new thresholds appear:

1. Self-directed discovery
An agent must discover, evaluate and negotiate with unknown peers in milliseconds.
Static DNS records, manual API catalogues and vendor-specific service meshes cannot supply
such real-time, cross-domain capability lookup.

2. Delegated authority with rapid revocation
When an agent hands a helper a subset of its privileges, the grant must be revocable instantly if
the helper misbehaves. OAuth tokens that linger for minutes and X.509 certificates that cache for
hours are no longer acceptable.

3. Cryptographic proof of behaviour
Trust can no longer hinge on “I control this domain.” Regulators and counterpart agents will
demand code-integrity attestations and tamper-evident execution logs that travel with the
agent wherever it migrates.

These thresholds are qualitative, not incremental: they render the legacy stack’s assumptions i.e. slow
propagation, human-issued credentials, domain-scoped identity that is fundamentally obsolete.

V0.3, Work in Progress, Request for Comments.

To understand why current architectures may be insufficient, we must recognize fundamental differences
between static web resources and autonomous Al agents:

Traditional Web pages are primarily passive resources where content is served upon request, interactions
are limited and predefined, changes are typically made by human administrators, and identity is relatively
stable and long-lived. Even modern push features (WebSockets, SSE, serverless functions) remain
centrally orchestrated and human-triggered.

Al Agents, by contrast, are dynamic, evolving programs. They initiate actions and requests and can be
ephemeral, appearing and disappearing in the orders of magnitude more frequently than website
deployments.. They make autonomous decisions, may change behavior over time, and may create other
agents. Additionally, they may move between hosting environments, many will consume non-trivial
compute, ranging from small WASM sandboxes to GPU-bound planners.

Potential Issues
These differences create several potential issues when trying to use current web infrastructure:

1. Latency - Agents demand millisecond-level capability look-ups, key exchange, and revocation;
human-tolerant DNS or OCSP latencies are orders of magnitude too slow.

2. Security & Privacy - New vectors: prompt-injection, sybil swarms, plug-in supply-chain
poisoning; mandate signed policies and runtime sandboxing.

3. Traceability - The autonomous and potentially self-modifying nature of Al agents complicates
tracking their decision-making processes, making accountability and compliance more
challenging. It requires append-only, tamper-evident execution logs to prove compliance.

4. Verification - Beyond domain-validated TLS, Al agents need cryptographic code-integrity
attestations and verifiable-revocable capability tokens, refreshed in seconds, not days.

5. Scalability & Coordination: The Internet of Al Agents enables distributed coordination and
adaptive task routing, offering resilience and scalability. Billions of short-lived actors need
decentralised, locality-aware routing, not central schedulers.

6. Data & Application Models: The classic web relies on rigid REST APIs and siloed data with
limited interoperability, while agentic systems embrace semantic web standards, support dynamic
interactions, and utilize machine-readable intents for seamless negotiation between Al agents.

7. Governance & Quota: Autonomous compute must respect resource budgets and kill-switch
policies enforced at the registry/index layer.

These fundamental differences suggest that simply extending current systems may not be sufficient for the
needs of the Internet of Al agents. New aspects, such as the dynamic verification of behavior, traceable

V0.3, Work in Progress, Request for Comments.

decision histories, and revocable privileges must be paired with behavioral metadata, reputational scores,
or cryptographic attestations to allow systems and users to assess agent reliability in real-time.

Challenges in Scaling - Unique Crossover Points

As we consider the transition to an Internet of Al Agents, three categories of scaling challenges emerge
i.e. addressing & routing, real-time trust propagation, and governance; each a critical ‘crossover point’
where legacy web systems begin to fail.

Known Unknowns

Several critical technical limitations are already visible when considering the current web infrastructure
for the Internet of AI Agents. Address scarcity remains a constraint despite NAT and IPv6 (i.e. IPv6 offers
2128 gpace); but the bottleneck is routing-table inflation and privacy-rotating IPv6 addresses churn, not
mere numeric supply Additionally, IPv6 adoption remains uneven and slow adoption rate over time (~ 44
% of global traffic as of May 2025).

DNS update propagation poses another significant challenge [3]. End-user visibility is gated by public
recursive resolvers: some consumer ISPs cache records aggressively or ignore low-TTL settings, so
worst-case propagation across the full resolver ecosystem can still stretch to 24 -48 hours [4], which
becomes unworkable for the Internet of Al agents with dynamic capabilities and locations. Agent index
must converge while handling billions of writes per hour.

Trust metadata is another gap. RDAP replaces WHOIS with JSON that is minimal and oriented toward
human ownership, while Al agents will require rich metadata about capabilities, permissions, ownership,
code-integrity digests, and revocation status and other characteristics. Existing systems have no standard
way to represent or query this information.

Certificate lifecycle reveals the additional bottleneck. ACME can issue a cert in under a minute, yet
CRL/OCSP mechanisms cannot yank or refresh trillions of certificates in real time, and they convey
nothing about an AI agent’s behavioural guarantees like creation, modification, and verification.
Additionally, certificate revocation lists would become unmanageably large [8].

Unknown Unknowns

Unknown Unknowns still loom over an Internet of Al Agents, even after we solve for address space,
metadata, and issuance speed. Latency requirements and security models raise fundamental questions
about how quickly (i.e. 5 ms, 50 ms or 500 ms) complex Al agents will need to discover globally and
authenticate other agents using cryptographic attestation to complete and remain stable. Every extra
round-trip or zero-knowledge proof increases safety but consumes the latency budget; empirical
thresholds have yet to be measured and what new attack vectors will emerge.

Governance and interoperability at a trillion scale, present equally complex challenges. ICANN’s
single-root model and W3C’s DID registries provide templates, but no consensus exists on how
competing registries or sovereign states will federate trust for autonomous software. We must determine

V0.3, Work in Progress, Request for Comments.

how standards will be established and enforced across potentially trillions of agents, and how agents from
different frameworks and with different capabilities will communicate effectively. A polycentric model
may emerge, or the ecosystem may fragment into incompatible “agent nets.”

Privacy under continuous delegation is particularly significant. The protocols and standards that will
ensure robust data minimization and privacy in the Internet of Al agents remain undefined, raising open
questions about how user data can be protected across billions of autonomous Al agents. Techniques such
as zero-knowledge capability proofs, differential privacy, or unlinkable yet accountable identifiers are
promising but untested at planetary scale.

Compute Confidentiality & Data Locality present emerging needs for privacy-preserving compute and
federated data access, raising questions about the adoption of secure enclaves, homomorphic encryption,
and other advanced storage models; yet remain constrained by hardware limits i.e. full homomorphic
encryption is orders-of-magnitude slower than plaintext compute. Request handlers face a related
challenge: handling billions of real-time agentic requests will require breakthroughs in scalable,
distributed load balancing and intent-aware orchestration. Whether hybrid models like stateless
ZK-rollups for proofs plus enclave execution for secrets, can meet both performance and compliance
targets is unclear. .

Intent-Aware Orchestration is another challenge i.e. routing large scale real-time Al agent requests
cannot rely on today’s L4/L7 load balancers. Schedulers must become intent-aware, matching tasks to
agents based on capability, jurisdiction, and carbon cost, yet no production-grade algorithms or economic
models exist. We may discover that entirely new coordination primitives are required, or that incremental
extensions of service-mesh technology suffice; at present, the answer is unknowable.

Upgrade or Switch

Given these challenges, we face a fundamental decision: should we upgrade existing web stack or switch
to purpose-built registries designed specifically for the Internet of Al agents, or adopt a hybrid approach
that blends both?

Upgrade Options

Upgrade options build upon the existing web stack rather than replacing it.

IPv6 Dual-Stack with Agent-Aware Routing: First, switching to IPv6 would leverage its massive
address space while maintaining compatibility with existing DNS infrastructure, providing a gradual
transition path from current systems. However, per-agent /128 announcements would inflate today’s BGP
table by six orders of magnitude, and rotating privacy IIDs undercut identity stability. Any upgrade must
therefore pair IPv6 with aggregated, signed routing manifests or overlay rendezvous services that shield
the DFZ from per-agent noise.

RDAP Metadata Extension: Updating RDAP/WHOIS metadata represents another evolutionary
approach. This would involve extending existing WHOIS databases with agent-specific fields, adding
capability descriptions, trust metrics, and other agent-specific data, while standardizing query methods for

V0.3, Work in Progress, Request for Comments.

agent-specific attributes. Please note that the ownership-only model must be expanded to include
capability descriptors and code-integrity digests.

ACME-Plus Certificates with Instant Revocation: Automated certificate methods automates certificate
issuance, but OCSP/CRL revocation still propagate in minutes; agent registries need millisecond
revocation and runtime-behaviour attestations. This would include creating agent-specific trust metrics
and verification standards, as well as implementing near real-time certificate revocation mechanisms.
Upgrading PKI therefore means binding each certificate to a signed Software Bill of Materials (SBOM)
and replacing CRL/OCSP with short-lived, stapled proofs that expire in milliseconds.

Agent-Specific DNS Records and Push Updates: DNS can be stretched by introducing SVCB/HTTPS
records whose sveparam fields carry capability hashes and policy pointers. Coupled with DNS Push (RFC
8765) or DoH subscription streams, this enables near-instant propagation while remaining
backward-compatible with existing resolvers, provided caches respect sub-second TTLs and deploy
cache-poison safeguards. DNS automation offers a final path forward, dramatically improving DNS
propagation times, implementing agent-specific DNS record types, and creating specialized agent
directory services within the existing DNS hierarchy.

Switch Options

Clean-Slate Cryptographic Namespace: More revolutionary approaches could fundamentally reimagine
agent addressing. Creating a new addressing system for agents would involve developing a parallel
addressing system specifically for agents, designed for agent-specific requirements from the ground up,
potentially implementing entirely new resolution protocols which resolves identifiers of every Al agent
through a purpose-built, millisecond-latency lookup service rather than DNS.

Self-Sovereign DID Mesh: Decentralized identity systems offer another paradigm shift, implementing
DID (Decentralized Identifier) based systems that allow agents to maintain self-sovereign identity and
enable direct agent-to-agent verification without touching a central index/registry, yet the ecosystem’s
150+ ‘DID methods’ risk fragmentation and slow discovery; a resolution super-router may still be
needed. [6].

Tiered Hybrid index: Hybrid index systems could balance centralized and decentralized approaches by
maintaining centralized registries for safety-critical or high-trust agents, while using a federated mesh
(DID, IPFS, or ActivityPub) for the long tail of specialized Al agents, creating bridge gateway protocols
between different index systems - which sign and cache proofs, so agents can traverse tiers in <50 ms.

Capability-First Addressing: Capability-based addressing represents perhaps the most radical departure
from current systems. This approach would address agents by their capabilities rather than static
identifiers, enable dynamic discovery based on required functions, and implement semantic addressing
systems. For example, a travel planner would query for ‘/translate-en-es’ or ‘/optimize-route’ and receive
a ranked list of agents that cryptographically attest to those capabilities. Such a semantic index must
include proof-of-capability tokens to prevent spam or spoofing.

V0.3, Work in Progress, Request for Comments.

Table 3: Comparative Analysis

Design Dimension

Enhanced-Upgrade Path

Clean-Switch Path

Key Trade-off

Identifier Space &
Routing

Dual-stack IPv6 +
aggregated signed routing
manifests to shield DFZ
from /128 noise

Hash-derived,
location-independent
IDs resolved by a new
overlay (e.g.,
Kademlia-style DHT)

Upgrade preserves BGP
tooling but risks FIB bloat;

switch avoids BGP but
needs new resolver
adoption

Revocation
Latency

Update /

DNS Push + DoH
streams; target < 1 s
global convergence;
OCSP stapling with

1-minute TTL

Gossip-based or
CRDT ledger with
millisecond write
propagation and

automatic tombstoning

Upgrade easier to deploy;

switch offers lower

worst-case latency if

overlay is well-peered

Identity & Trust

ACME-plus certs bound
to SBOM digests; RDAP
fields for capability &
trust-score URIs

Self-sovereign DIDs +
verifiable credentials;

transport still
TLS (or QUIC)

uses

Upgrade piggy-backs on
browsers; switch removes
central CA
fragments trust anchors

reliance but

closed ecosystems

Capability DNS SVCB/HTTPS | Capability-first DNS option benefits from
Discovery records hold signed | queries ubiquity but limited
capability hashes; | (“/translate-en-es”) expressiveness;
optional SRV fall-back resolved by semantic | capability-index richer but
index with ZK-proof | new protocol
of capability
Governance Extend ICANN/SSAC + | Polycentric federation | Upgrade reuses existing
Model IETF drafts of registries with [policy channels; switch
on-chain transparency | encourages innovation but
logs risks fragmentation
Implementation 12-18 months for global | 3-5 years to spec, | Time-to-value Vvs.
Timeline IPv6 + DNS Push rollout; | standardise and | architectural purity
incremental RDAP fields | bootstrap overlay;
early adopters in

V0.3, Work in Progress, Request for Comments.

Backward High: HTTP(S) stacks, | Medium: gateways | Compatibility vs. feature
Compatibility browsers, firewalls remain | can bridge, but native | richness

unchanged support needed for full

feature set

Operations & | Leverages existing [New infra but simpler | OPEX vs. CAPEX balance
Cost DNS/BGP tooling; OPEX | core (no multi-gig

rises with churn | FIB); CAPEX high at

mitigation bootstrap

Conclusion

The transition to the Internet of Al agents represents a fundamental shift in how we interact with digital
systems, comparable to the shift from dialup to broadband internet. While upgrading existing systems
offers a path of least resistance and backwards compatibility, the unique requirements of autonomous
agents suggest that entirely new index architectures may ultimately be necessary.

The history of technology transitions suggests that hybrid approaches often emerge during periods of
rapid change. We may see centralized registries for critical agents alongside decentralized systems for
specialized agents, with bridge protocols enabling interoperability.

What's clear is that this infrastructure question must be addressed proactively rather than reactively. The
decisions made today about agent index architecture will shape the capabilities, security, and accessibility
of the Internet of Al agents for decades to come. By learning from past transitions and anticipating future
needs, we can build infrastructure that not only addresses current requirements but remains flexible
enough to accommodate the unknown unknowns that will inevitably emerge as autonomous agents
become an integral part of our digital landscape.

Rather than simply extending human-oriented web infrastructure, we have an opportunity to design
systems specifically for agent-to-agent interactions, potentially unlocking entirely new categories of
applications and services. Whether through upgrade or switch - or most likely, some combination of both
- the index architecture for the Internet of Al agents will be a critical foundation for the next era of digital
innovation. By acknowledging that infrastructure defines both capabilities and accountability, we can
create an Internet of Al agents that is not only scalable and performant, but also responsible and resilient.

References

1. DataReportal & Kepios. (2025, April). https://datareportal.com

DataReportal — Global Digital Insights

Digital 2025 April Global Statshot Report.

2. Shen, M., & Yang, Q. (2025). From mind to machine: The rise of manus ai as a fully autonomous digital agent. arXiv
preprint arXiv:2505.02024.

3. Gao, Z., & Venkataramani, A. (2019, April). Measuring update performance and consistency anomalies in managed
DNS services. In IEEE INFOCOM 2019-1EEE conference on computer communications (pp. 2206-2214). IEEE.

4. DNS Made Easy. (2025, March25). DNS propagation: Why doesn’t my domain work? DNS Made Easy.
https://dnsmadeeasy.com/resources/dns-propagation-why-doesnt-my-domain-work

5. Google. (2025, May 6). IPv6 adoption statistics. Retrieved May 13, 2025, from https://www.google.com/intl/en/ipv6/

https://datareportal.com/
https://datareportal.com/global-digital-overview?utm_source=chatgpt.com
https://dnsmadeeasy.com/resources/dns-propagation-why-doesnt-my-domain-work

V0.3, Work in Progress, Request for Comments.

10.

11.

World Wide Web Consortium. (2025, Apr.). Decentralized identifiers (DIDs) vi.1 (W3C Recommendation).

Chamola, S. (2023, September 22). EV SSL certificates: Pros & cons. Encryption Consulting.
https://www.encryptionconsulting.com/ev-ssl-certificates-pros-cons/

Barnes, R., Hoffman-Andrews, J., McCarney, D., & Kasten, J. (2019). Automatic Certificate Management Environment
(ACME) (RFC 8555). Internet Engineering Task Force. https://doi.org/10.17487/RFC8555

Nielsen, J. (1993/2020, October 4). Response Times: The 3 Important Limits. Nielsen Norman Group.
https: nngr m/articles/r nse-times-3-im nt-limi

Beyer, B. et al. (2016). Site Reliability Engineering: How Google Runs Production Systems — Section “Service-Level
Objectives,” Example latency budgets. Google SRE online copy: https:/sre.google/sre-book/service-level-objectives
OpenAl. (2025, May 13). GPT-4o System Card — Figure 5 & Table 2 show median inference latencies of 150 ms—2 s
for 128-1 k tokens; recommends streaming to keep user-visible turnaround wunder ~3 @ s.
https://openai.com/research/gpt-4o-system-card

https://www.encryptionconsulting.com/ev-ssl-certificates-pros-cons/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://sre.google/sre-book/service-level-objectives
https://openai.com/research/gpt-4o-system-card

	Upgrade or Switch: Do We Need a Next-Gen Trusted Architecture for the Internet of AI Agents?
	Introduction
	A Primer on the WWW Architecture and Hierarchy
	A Lesson from Dial-up → Broadband
	Why We Didn't Use Dialup for Internet Long-Term
	How We Dealt with Known Unknowns
	How We Prevented Unknown Unknowns

	Possible Extended Use of Current DNS
	Walled Gardens: Few IP Addresses but Many Endpoints
	Each Agent with an IPv4 Address

	From Static Endpoints to Services to Workers to Autonomous Agents: a Continuum of Web Actors
	1. Endpoints : The Stateless Web
	2. Services : Always-On APIs
	3. Workers : Event-Driven Compute
	4. Agents : Autonomy and Delegation

	
	
	
	
	Potential Issues

	Challenges in Scaling - Unique Crossover Points
	Known Unknowns
	Unknown Unknowns

	Upgrade or Switch
	Upgrade Options
	IPv6 Dual-Stack with Agent-Aware Routing: First, switching to IPv6 would leverage its massive address space while maintaining compatibility with existing DNS infrastructure, providing a gradual transition path from current systems. However, per-agent /128 announcements would inflate today’s BGP table by six orders of magnitude, and rotating privacy IIDs undercut identity stability. Any upgrade must therefore pair IPv6 with aggregated, signed routing manifests or overlay rendezvous services that shield the DFZ from per-agent noise.
	RDAP Metadata Extension: Updating RDAP/WHOIS metadata represents another evolutionary approach. This would involve extending existing WHOIS databases with agent-specific fields, adding capability descriptions, trust metrics, and other agent-specific data, while standardizing query methods for agent-specific attributes. Please note that the ownership-only model must be expanded to include capability descriptors and code-integrity digests.
	ACME-Plus Certificates with Instant Revocation: Automated certificate methods automates certificate issuance, but OCSP/CRL revocation still propagate in minutes; agent registries need millisecond revocation and runtime-behaviour attestations. This would include creating agent-specific trust metrics and verification standards, as well as implementing near real-time certificate revocation mechanisms. Upgrading PKI therefore means binding each certificate to a signed Software Bill of Materials (SBOM) and replacing CRL/OCSP with short-lived, stapled proofs that expire in milliseconds.
	Agent-Specific DNS Records and Push Updates: DNS can be stretched by introducing SVCB/HTTPS records whose svcparam fields carry capability hashes and policy pointers. Coupled with DNS Push (RFC 8765) or DoH subscription streams, this enables near-instant propagation while remaining backward-compatible with existing resolvers, provided caches respect sub-second TTLs and deploy cache-poison safeguards. DNS automation offers a final path forward, dramatically improving DNS propagation times, implementing agent-specific DNS record types, and creating specialized agent directory services within the existing DNS hierarchy.
	​Switch Options

	
	Table 3: Comparative Analysis
	Conclusion

